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An Identity for Spline Functions with Applications
to Variation-Diminishing Spline Approximation!

MARTIN J. MARSDEN

Michigan State University, East Lansing, Michigan 48823

INTRODUCTION

I. J. Schoenberg [22] has recently constructed a generalization of Bernstein
polynomial approximation, which associates to functions f(x), defined
on [0, I], the approximation

n-l

S<Jkf(x) = L: j(gj) Nj(x)
j=-k

(n > 0, k > 0). (1)

SJ'f(x) is a spline function of degree k, having knots from LI, where

(0 = Xo < Xn < ... < Xn = 1).

The "nodes" gj and the "fundamental functions" N;(x) depend on k and LI.
The approximations (1) reproduce linear functions and are variation

diminishing (see [22]). We shall refer to them as "variation-diminishing
spline approximations." They have the shape-preserving properties of
Bernstein polynomials and, when appropriately selected, converge
much faster than Bernstein polynomials (See [22], and Marsden and
Schoenberg [16]).

In part I, we shall prove a generalization of the Weierstrass approximation
theorem, by showing that (1) converges uniformly to f(x) for continuous
functions, if and only if

~-o
k '

where, as usual, II Llrl = maxj(xi+l - Xj).

1 Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No. : DA-31-I24-ARO-D-462.
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The primary tool will be an identity relating powers and B-splines. My
original proof of this identity being quite cumbersome, I give, instead,
a proof supplied by T. N. E. Greville (private communication).

In Part II we make the necessary, but slight, alterations in Greville's
proof, which yield the corresponding identity for Tchebycheff spline functions.
From this identity, "Tchebycheffian spline approximation," extending
Schoenberg's spline approximation, is defined. A convergence theorem for
Tchebycheffian spline approximation concludes Part II.

In Part III, Schoenberg's variation-diminishing spline approximations
are discussed in more detail, with emphasis on their similarities to (and
differences from) Bernstein polynomials. Their potential for application is
also discussed. Topics covered include convergence of derivatives, approxi
mation to convex functions, and constraints on the nodes.

In Part IV, we discuss the possibility of extending Voronovskaya's theorem
and related asymptotic formulae.

PART I: THE WEIERSTRASS ApPROXIMATION THEOREM

FOR SPLINE FUNCTIONS

1. Divided Differences and B-Splines

The purpose of this section is twofold: (1) to recall the facts needed in
the proof of Theorem 1 below, and (2) to make the discussion of Tchebycheff
splines in Part II more lucid. For this latter reason, more details than necessary
are included. There is no new material.

For a given function f(t) and points tI , t2 , ... , tk+1 (k ?:: 0), the divided
difference f(ti , t2 , ... , tk+1) is defined by

f(tI , t2 , ... , tk+1) = the coefficient of tk in the unique polynomial of
degree k or less which interpolates f(t) at tl , t2 , ... , tk+1 •

Multiple values are permitted among the points ti • For such multiple values
we interpolate one or more derivatives off(t) as well asf(t) itself.

In terms of divided differences and the Newton polynomials

(t - tI)(t - t2) ... (t - tk)

Hermite interpolation is specified by

(k > 0),

k~m

f(t) = fUI) + L (t - tI) ... (t - tk)f(ti , ... , tk+1) + R(t), (1.1)
k~I

where m ?:: 0, and R(t) is the remainder, given by

R(t) = (t - tI) ... (t - tm +1) f(t i , ... , tm +1 , t). (1.2)
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Writing (1.1) with tm+l replaced by t, then with tm+l replaced by t', and
subtracting yields the recurrence relation

(t - tI ) ... (t - tm)[f(ti ,... , tm , t) - f(ti ,... , tm , t')]

= (t - tI ) ... (t - t",)(t - t')f(ti ,... , tm , t, t') (1.3)

which can, of course, be simplified.
Spline functions will now be defined. Let m be a positive integer and

{Xj} a doubly infinite sequence of real numbers satisfying

( - IX) < j < +IX)). (1.4)

(1.5)
(b) s(x) has a continuous (m - i)th derivative on (Xj, Xi+i)

whenever Xj < Xj+i •

We denote lim inf Xj by ex and lim sup Xj by ~, usually supposing that both
are infinite.

By a spline function of order m, or degree m - 1, having the knots Xj,

we shall mean a real function s(x) satisfying:

(a) s(x) is a polynomial of degree m - 1 or less on (Xj , Xj+I]
whenever Xj < Xj+l ; and

On (ex, ~), a basis for the set of spline functions is provided by the B-splines
Mlx), which may be defined by

Mlx) = M(x; Xj , Xj+l , ... , xj+m) ( - IX) < j < + 00), (1.6)

where

M(x; t) = m(t - X),;,-I = m(t - x)m-I

=0

if t ~ x,

if t < x;
(1.7)

i.e., for a given x, Mlx) is the divided difference of M(x; t) over the knots
t = Xj , ... , Xj+m •

The term Mlx) is a nonnegative spline function which vanishes outside
(Xj , xj+m]'

The B-splines are discussed in detail in Curry and Schoenberg [5]. (See
also [22].)

2. The B-Spline Representation of Polynomials

It has long been known (see [5]) that every polynomial of degree at most
m - 1 has a unique representation on (ex,~) as a linear combination of
the B-splines Mj(x).

The following theorem gives the information necessary to specify these
representations explicitly.
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THEOREM 1. Let p, q be integers such that

X:p+m-l < Xq+1 .

Then the relation

j=q

m(t - x)m-l = L (XHm - x;)(t - Xj+1) ... (t - XHm-l)M;{x), (2.1)
j=:p

is valid for all complex t and for X:p+m-l < X ~ Xq+1 .

Proof. For fixed x, let

R;{t) = M(x; t)-the polynomial in t of degree m or less
which interpolates M(x; t) at t = Xj ,... , XHm .

From (1.2),

Rj(t) = (t - Xj) ... (t - XHm) M(x; Xj ,... , XHm , t) (2.2)

and, hence,

Rj+1(t) = (t - Xj+1) ... (t - XHm+1) M(x; Xj+1 ,... , xHm+1 ,t). (2.3)

Using (1.3), with ti = XHi (1 ~ i ~ m) and with t' = Xj , in (2.2), then with
t' = xj +m+1 in (2.3), and subtracting yields

R;{t) - Rj+1(t) = (t - Xi+!) ... (t - xHm)[MH1(X) - M;{x)].

Hence, for p ~ q,

j=q

R:p-l(t) - Rq+1(t) = L (t - Xj+1) ... (t - xHm)[MH1(X) - M;{x)]. (2.4)
j=:p-l

Now, for x ~ xq+1 ,

and R q+1(t) = M(x; t) - m(t - x)m-l. (2.5)

Similarly, for X:p+m-l < x,

M 2l- 1(x) = 0 and R 2l_ 1(t) = M(x; t). (2.6)

Substitution of (2.5) and (2.6) into (2.4) yields the required result (2.1),
after some reindexing and cancellation.

As mentioned previously, the above proof is due to T.N.E. Greville.
By letting p + m - 1 = 0 and q + 1 = n, we have the following:

COROLLARY. Let n > 0, Xo = a, Xn = b. Let m ~ 3,

(-m <1 < n), (2.7)
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c. = X1+1 + ... + Xj+m-I
S, m - 1

and

(-m <j < n), (2.8)

Then,for a ~ x ~ b,

n-I

1 = L Nlx),
I-m

n-I

X = L gjNj(x) ,
I-m

and

n-I

x2 = L g~2Wix),
I-m

(-m <j < n). (2.9)

(2.10)

(2.11)

(2.12)

provided that NI_m(a) be replaced by NI_m(a+) whenever XI _m = Xo = a.

T. N. E. Greville first described (2.7), (2.8), (2.10), and (2.11) in his supple
ment to Schoenberg's paper [22]. Here the relations (2.10-12) result from
equating the coefficients of tm- I, tm- 2, tm- 3 in (2.1). The new result here, (2.12),
will be useful in establishing convergence theorems about the approximation
method developed by Schoenberg in [22] (and redeveloped in Section 3 below).

The above-mentioned modification in the definition of NI-m(a) is sufficient
(and necessary) to make (2.1) valid at the left endpoint of [a, b] (see [5],
page 79). Observe that (2.10) and (2.11) are valid for m = 2, also.

3. Spline Approximation on [a, b]

Let n > 0, k > 0 be integers and let

be a sequence of real numbers satisfying

and

(k < i < n).

We extend the sequence by setting

(3.1)

X-k = X-k+1 = '" = X-I = a and X"+l = ... = X n+k = b
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and let NJCx) and gj (-k ~ j < n) be defined by (2.7) and (2.8), with
k = m - 1. Then,

a = L .. < g-1c+l < ... < gn-l = b. (3.2)

The relations (2.10), (2.11), and (3.2) suggest the following approximation
method.

To eachf(x) defined on [a, b], associate the spline function

n-l

Sf(x) = S,/1(x) = L f(gj)Nix)
i=-k

(a ~ x ~ b). (3.3)

Sf(x) is to be regarded as an approximation to f(x) on [a, b].

This approximation method was introduced by I. J. Schoenberg in [22].
The "nodes" gj and the "fundamental functions" Nix) are determined by
the degree k and the knots L1. It is easily seen that

Sf(x) E C[a, b],

Sf(a) = f(a), Sf(b) = f(b),

and that, when the inequalities of (3.1) are all strict,

Sf(x) E Ck-l[a, b].

I. J. Schoenberg has proved the following important theorem (see [22]).

Schoenberg's Theorem. The approximation Sf(x) to f(x) is exact for linear
functions and is variation-diminishing. This means that for every linear function

l(x) == cx + d,

the difference Sf(x) - l(x) has no more variations in sign on the interval [a, b]
than the differencef(x) - l(x) has.

Because of this theorem, we shall refer to (3.3) as "variation-diminishing
spline approximation."

A consequence of Schoenberg's theorem is that

IJf(x) ~ 0 on [a, b], then Sf(x) ~ 0 on [a, b]. (3.4)

Combining this result with the well-known Bohman-Korovkin theorem
(see [4], [14]) yields:

THEOREM 2. A necessary and sufficient condition that

lim Sf(x) = f(x) uniformly in [a, b], (3.5)

for every function f(x) E C[a, b], is that (3.5) hold for the particular function
{(x) = x 2•
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By "lim Sf(x)" is meant the limit of the sequence of approximations
corresponding to a sequence of values of Ll and k.

Proof Because of (3.4), the Bohman-Korovkin theorem applies, namely,
a necessary and sufficient condition that (3.5) hold for every continuous
function is that it hold for the particular functions f(x) - 1, f(x) == x,
f(x) = x 2• From Schoenberg's theorem (or (2.10), (2.11», Eq. (3.5) is trivially
satisfied for the first two of these functions.

4. The Weierstrass Approximation Theorem for Spline Functions

In this section, Theorem 2 and the Corollary to Theorem I are used to
develop necessary and sufficient conditions on Ll and k that variation
diminishing spline approximations to a continuous function converge
uniformly. We then use this result to state an extension of the Weierstrass
approximation theorem.

LEMMA. Let E(x) be the error in approximating the function g(x) = x2

by Sg(x) of (3.3); i.e.,

E(x) = Sg(x) - g(x).

Then, for a ::( x ::( b,

1 2' l· (b - a)2 kII L111 2 I.o ::( E(x) ::( 2k max (XHk - x;) ::( mill 2k ' 2 "
O~J~n . J

if k = 1,
max E(x) = til L111 2

;

ifn = 1,

E(x) = ~ ( x - a )( b - x );
k b-a b-a

and ifk :? 2,
n-l

E(x) = I AjNj(x),
-k

where

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Proof For k = 1, the approximation method (3.3) is equivalent to linear
interpolation. For n = 1, (3.3) gives Bernstein polynomial approximation
on [a, b], (see [22], [16] for details). These facts imply (4.2) and (4.3),
respectively.
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To prove (4.4), we note that for g(x) = x2,

n-l

Sg(x) = L (gj)2Nj(x),
-k

and
n-l

g(x) = L g~2lNj(x)
-k

where gj and g~2) are given by (2.8), and (2.9). Thus,

n-l

E(x) = L [(gj)2 - gJ2l]Nj(x),
-k

which becomes (4.4) if we let

-\ = (gj)2 _ g~2l. (4.6)

Expansion of (4.5) and (4.6) gives identical expressions, completing the
verification of (4.4).

That E(x) ~ 0 is implied by Schoenberg's theorem. The remainder of (4.1)
will follow from (4.2) and (4.4). If k = 1, (4.1) is a restatement of (4.2)
with i replaced by the larger t. If k ~ 2, (4.4) implies

E(x) :(; m~x Ai L Nix) = m~x Ai .'. ,
1

Because the Xi are monotone and (4.5) involves k(k - 1)/2 terms, for each j,

In addition,

and

so that the proof of (4.1) and, hence, of the lemma is complete.
From this lemma and Theorem 2, we get the following

THEOREM 3. A necessary and sufficient condition that

lim Sf(x) = f(x), uniformly in [a, b], (4.7)

for every f(x) E C[a, b], is that

I" ~-o1m k - " (4.8)
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Proof To prove necessity, we note that

II LI [I x· 1 - X· X· k - X·-- = max H '< max H' '= m!lx(gj - gj-l)'k j k ~ j k }
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Bohman has shown in [4], pp. 43-45, that, in order for (4.7) to hold, it is
necessary that the right-hand member tend to zero. Hence, (4.8) is necessary.

To prove sufficiency, we use the lemma to show that

lim E(x) = 0, uniformly in [a, b]. (4.9)

Theorem 2 will then imply that (4.7) must follow.
From the latter inequality of (4.1), (4.9) will hold if either

lim k = 00,

or

k is bounded and lim II L111 = 0.

(4.10)

(4.11)

The other possibilities encompassed by (4.8) can be handled by a simple
argument. In fact, given E > 0, either

k > (b - a)2
2E

or

(b - a)2
k ~ -"--=---'--

2E
and

will guarantee that max I E(x) I < E.

In practice, either (4.10) or (4.11) will occur. Indeed, since the "input"
to the approximation (3.3) consists of n + k pieces of data (the values off(x)
at x = gj, -k :::;; j < n), (4.1) suggests that for a given number

1= n + k,

it may be preferable to select n large (II L111 small) rather than k large. More
evidence on this matter has been given in [16].

Theorem 3 is a powerful tool. For example, Theorem 2 in [16] follows
from it immediately as a corollary. We shall now use Theorem 3 to prove
an extension of the Weierstrass approximation theorem.

Let LI satisfy (3.1) as extended in the sentence following (3.1) and let g
denote the entire class of spline functions defined on [a, b] of degree k > 0,
having the knots L1. Using the uniform norm

Ilfll = max If(x) I
"'E[a,b]
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for functions I(x), continuous on [a, b], we define the distance of such a
function from the class :7 by

d(f, :7) = inf iii - ail.
aeY'

THEOREM 4. Let g(x) E qa, b]. To every € > 0 there corresponds a
;, = ;'0 > 0 such that

whenever

d(g,:7) < € (4.12)

(4.13)

Theorem 4 is implied by Theorem 3, since Sg(x) E :7. If n = 1,:7 becomes
the set of polynomials of degree at most k, while the left side of (4.13) reduces
to (b - a)jk. Thus, Theorem 4 is an extension of Weierstrass' theorem.

We shall now leave Schoenberg's variation diminishing spline approxima~

tions and, in Part II, prove some results similar to those in Sections 2-3 above
for spline functions based on Tchebycheff polynomials. We shall return to
the present topic in Parts III-IV.

PART II: TCHEBYCHEFFIAN SPLINE ApPROXIMATION

5. Extended Complete Tchebycheff Systems

Let m be a positive integer and let wlx) (l < i < m) be real functions
satisfying

Wi(X) E cm+! (-00, + 00) and g.l.b. Wi(X) > O.
-oo(x(oo

To this set of functions we adjoin the functions

Wo(X) = w_1(x) = 1

and then define the two systems {Ui(X)y;-l and {Vi(t)},;+l by

Uo(X) = 1,

Ul(X) = rWl(gl) dg1 ,
o

(5.1)

(l < k < m),
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and

vo(t) = wm(t),

v1(t) = wm(t)rWm-l(gl) dg1 ,
o

t <1
Vk(t) = wm(t) I Wm-l(gl) I Wm- 2(g2)

o 0

.Ek-1'" I Wm-k(gk) Sgk ... dg1 (1 < k ~ m + 1).
• 0

17

(5.2)

We shall have only slight need for the functions vm(t) and Vm+1(t). Indeed,
a somewhat longer proof of Theorem 7 below avoids the need for Vm+1(t)
entirely.

The systems {Ui(X)};;.-l and {Vi(t)}~+lare each extended complete Tchebycheff
(ECT) systems. These have been discussed in detail in Karlin and Studden [12],
especially Chapter XI. See also Karlin [10], Karlin and Schumaker [11],
and Karlin and Ziegler [13].

Our notation will generally correspond to that in [12], except for Vi(t).
The ECT-systems have unique interpolation properties similar to those

of polynomials. The word "extended" refers to the fact that the order of
interpolation at a point may be multiple, i.e., involving interpolation to
several derivatives as well as to the function itself. The word "complete"
refers to the fact that {Vi(t)}~ is an extended Tchebychetf system for
O~k~m+l.

By a v-polynomial of degree j (0 ~ j ~ m + 1), we shall mean a function
v(t) of the form

i=j

v(t) = L aivi(t)
i=O

(ai real, aj =f. 0).

We similarly define u-polynomials of degree j, (0 ~ j ~ m - 1).
Following [12], we define

(
0 '" k)v* = det II v,(t,)II~ '-0to ... tk • 1 '.1-

(0 ~ k ~ m + 1), (5.3)

where, for repeated t;'s, the corresponding columns of the determinant are
replaced by derivative columns. For example,

The determinant (5.3) is never zero, and, if to ~ ... ~ tk , (5.3) is positive.
See [12], p. 6.
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vet) = v* (0 1 '" k), (5.4)
t tl '" tk

as being defined by (5.3) with t = to *- ti (1 < i < k), then extended
continuously for t = ti (1 ~ i < k). Thus, vet) in (5.4) is a v-polynomial
of degree k, with zeros at t = ti (1 < i ~ k). If ti occurs r + 1 times among
the t/s, then each derivative of vet), up through the rth, also has a zero
at t = ti .

Observe that, for example,

v* (0 1) I = 0*- V* (0 tIl)'
t tl t=/1 tl

If (5.4) is expanded by minors about the first column, we obtain

i=k (0'" i ... k)
vet) = L (-I)iV* viet),

i=O tl ... ti ... tk

where i indicates the deleted ith row.
Dividing throughout by the coefficient of vit) normalizes this v-polynomial

to the Newton v-polynomial (5.5) of degree k, having the k zeros t1 , t2 , ... , tk :

(
0 1 k)

N* (0 1 k). = (-l)k v* t t1 tk • (5.5)
t t1 tk v* (0 ... k - 1)

t1 .. • tk

In (5.5), the coefficient of Vk(t) is unity, as was the case with the coefficient
of tk in the Newton polynomials of Section I above. However, Vk(t) will
correspond to m(m;;1) tk rather than to tk, so that Newton v-polynomials
are not a direct extension of Newton polynomials. See also the comments
leading up to (5.7) below.

Any v-polynomial of degree k which has k specific zeros is unique up to a
multiplicative constant.

The systems {Ui(X)};;,-l and {Vi(t)};;,-I span the respective null spaces of the
adjoint operators Land L * given by

L(u) = DmDm- I ... D1(u),

L*(v) = (-I)mDoDI ... Dm _ 1(v/wm),

where
1 d

D i = -(- -d (0 ~ i ~ m),
Wi x) x

(See Ince [9], p. 125, and [12], p. 440).

(5.6)
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For wlx) = i, these systems become

19

(0 ~ i < m),

and

(
m - 1)

v;(t) = m i t i

From the binomial theorem, we have

(0 ~ i < m).

m-1 1
m(t - x)m-1 = L m ( m - .) tm- 1- i ( -x)i,

. m-l-1,=0

or

(
0 1 ... m - 1) m-1 .

N* t = '" (-I)'ui(x)vm_1_i(t).X ••• X L.,,=0
(5.7)

This relation is also true in the general case, since it is easy to verify, using
(5.6), that

N* (0 1 m - 1)
t x x

(5.8)

and the right side of (5.8) may be transformed, by repeatedly using (5.1)
and (5.2), into the right side of (5.7) (see also [12], p. 448).

We shall dignify (5.7) by calling it the binomial theorem.

6. Divided v-Differences and Tchebycheffian B-Splines

This section is an extension of Section I above.
For a given function I(t) and points t1 , ••• , tk +1 (0 ~ k ~ m + 1), the

divided v-differencej;,(t1 , ••. , tk+1) is defined by

1'V(t1 ,... , tk+1) = the coefficient of Vk(t) in the unique v-polynomial
of degree k or less which interpolatesflt) at
t1 , ••• ,tk+1' (6.1)

In terms of divided v-differences and the Newton v-polynomials defined
by (5.5), generalized Hermite interpolation is specified by

k-m 01 k
I(t) = k~O N* C t

1
tJ !'V(t1 ,... , tk+1) + R(t), (6.2)
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where m ~ 0 and R(t) is the remainder, given by

(
0 1 '" m + 1)

R(t) = N* t t '" t fv(tl ,... , tm+! , t).
1 m+I

(6.3)

Writing (6.2) with tm+! replaced by t, then with tm+! replaced by t', and
subtracting yields

N* (0 1 m) [fv(tl ,... , 1m , t) - fitl ,... , tm , t')]
t tl tm

= N* (Ot tIl . .. m m + 1) I' ( , ), Jv 1I,···,1m ,t,t,... tm t

an expression which cannot, in general, be simplified (see (1.3).
It can be shown that

I' ( ) F* (~ m t: 1 t~J
J v 11 , ... , 1m +I = -V-*------:(O~--m----'-"-----;I--"-m'-'-=-) ,

tl tm tm+!

(6.4)

(6.5)

where, on the right, the numerator is similar to the denominator, with the row

replaced by

To verify (6.5), one first shows that

F* (0 mit)
R(t) = tl 1m+! ,

(
0 m)

v* 1
1

1
m

+!

(6.6)

where the numerator is defined as vet) of (5.4) with k = m + 1, except
that for each j, vm+!(tj) is replaced by l(tj). The coefficient of vm(t) in (6.6) is
the negative of (6.5).

Tchebycheffian spline functions, or T-splines, are defined as were spline
functions in Section 1 above, with a slight modification, namely:

seX) is a T-spline of order m or degree m - 1, if
(a) sex) is a u-polynomial of degree m - 1 or less on

(Xj , Xj+!] whenever Xj < Xi+! ; and
(b) sex) E Cm-i(Xi , Xi+i) whenever Xi < Xi+i .

(6.7)
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The reason for defining T-splines in terms of u-polynomials instead of
v-polynomials will become clear after Theorem 7 below is proved.

Tchebycheffian B-splines Mj(x) are defined as in Section 1, with (1.7)
replaced by

. (0
M(x; t) = N* t X

and (1.6) replaced by

m - 1) = N* (0
x + t x

=0

if t ?o x

if t < x

(6.8)

(6.9)

An early description of T-splines was given by Greville [7J. See also
Ahlberg, Nilson, and Walsh [IJ and Karlin and Ziegler [13J.

It is not obvious that the functions MJCx) form a basis on (a, (3) for the
T-splines. Nor is it even apparent that the MJCx) are T-splines.

We could bypass these facts, since we now have all the machinery necessary
to prove an analog of Theorem 1 and to define T-spline approximation
analogous to the variation-diminishing spline approximation given by (3.3).

However, these facts do have independent interest. Moreover, their proof
will place us on somewhat firmer ground. Therefore, the next section is
devoted to an indication of their proofs.

7. The MJCx) Form a Basis for the T-splines

This section is an extension of much ofPart I of Curry and Schoenberg [5J.
Gaps, of which there are many, in the discussion can be filled in by looking
at the corresponding places in [5J.

As mentioned in Section 6 above, the facts developed in this section are
not required for the definition of T-spline approximation.

Following [5J, pp. 80-81, we assume that the knots {Xj} satisfying (1.4) are
located at the distinct points

... < Y-l < Yo < Yl < ... (Yk-+ ±oo ask--+ ±oo)

where for each i, Yi is a knot of multiplicity ai (<Xi ~ m) with

Yo = X o and

Then (6.7b) in the definition of T-splines becomes

(-00 < i < +00). (6.7b')
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LEMMA 1. Suppose that

MARSDEN

i=N

LCY.i=m+l.
i=l

Then the Tchebycheffian B-spline
(Xl (XN

M 1(x) = M,,(x; Xl"'" Xm+l) = M,,(x;~ ,... ,~)

is a Tchebycheffian spline function. Moreover, M 1(x) is precisely of the
continuity class Cm - 1-"'i in the neighborhood of the point Yi ,for 1 ~ i ~ N.

Proof (See also Lemma 1 of [5]).
From (6.5) and (6.9) we deduce that

N lki

M1(x) = L L a/fiix),
t=l ;=1

where

( a );-1 I
fi;(x) = at M(x; t) t~lIi

In view of (6.8) and (5.8), either Yt < X and

fiix) = 0,

or X ~ Yt and

Thus, fi;(x) consists of linear combinations of integrals of the form

(7.1)

(0 < k ~j). (7.2)

By interchanging the order of integration, (7.2) becomes

(7.3)

which is in the null space of L as given by (5.6) and is, hence, a u-p01ynomial.
Thus, on each interval (Yt, Yi+l], M 1(x) is a u-p01ynomia1 of degree at

most m - 1, verifying (6.7a).
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To verify (6.7b'), we use (6.8) again, to conclude that
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(7.4)

From (7.1) and (7.3), (djdx)'Phix) for x < Yi is a linear combination of
terms of the form

(0 :0:;; r :0:;; p, °< k :O:;;j).

Evaluation of these terms at x = Yi gives zero, unless r + k = m. Since

r + k 0;; p + j < (m - (Xi) + (Xi = m,

the condition (6.7b') in the definition of T-splines is verified.
Now (7.4) is also valid for p = m - (Xi' But the above analysis shows us

that the terms on the right are zero except for j = (Xi , in which case k = j = (Xi

and r = p = m - (Xi • Thus, the jump in (djdx)m-~i M1(x) at x = Yi is

which is nonzero, since, from (6.5) and (6.9),

v* (0 m - 1)
ai = (_l)~i+l+"'+~N _----'Y'--'l':.-__---'y'--'N-'--_ * 0,
~i v* (0 m)

YI YN

(7.5)

where the multiplicity ofYi in the numerator is (Xi - I instead of (Xi •

This observation completes the proof of Lemma 1.
Clearly, since Mix) involves exactly m + 1 knots, we can relax the

supposition that

L (Xi = m + I

and prove a corresponding lemma, regarding each Mi(x), having relaxed
suppositions at the knots Xi and Xi+m •
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THEOREM 5. Every T-spline s(x) can he represented uniquely in the form

+00

s(x) = L cjMix)

If s(x) = 0 outside of (h , YN), then

(Cj real).

r-m

s(x) = L cjMix)
1

where
N

r=LCXi'
1

Ifr ~ m, S(X) - O.
This theorem is the analog of Theorem 5 in [5]. The proof proceeds in a

straightforward manner with changes similar to those made in proving
Lemma 1.

Setting i = N in (7.5), gives a~N > O. This, and an interchange of the order
of integration in (5.8), yields:

THEOREM 6. Let Xj < Xi+l < ... < Xi+m' Then

(0 < k < m - 1)

has exactly k distinct simple zeros in the interval (Xj , Xi+m) and

M;(x) >0 (7.6)

The operators D i were defined in (5.6) above. The only necessary change
in the proof given in [5], pp. 74-75 is to note that, in the intervals (Xi' Xi+l)'

Dm- 2 ••• D2D1M;(x) = ai + hi rWm_1(X) dx,
o

a function which behaves like a straight line; i.e., it can have at most one zero.
The conclusion (7.6) is also valid for multiple knots. Clearly, from (6.1),

(6.8), and (6.9) it follows that

Mix) = 0 outside of (Xj, Xi+m]' (7.7)

It is also true that f:: Mix) dx = 1. (See Radon [20], and [5], p. 74.)

8. The B-Spline Representation of u-Polynomials

We now extend Section 2 above.
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THEOREM 7. Let p, q be integers such that

Then the relation
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N* (0 1 ... m - 1) = if aiN * (0
t x ... x i~p t Xi+l

... m - 1) M;(x),
... Xj+m-l

(8.1)

is valid for all real t and for Xp+m- 1 < X :( Xq+l' where the aj are positive
constants given by

v*e. m ) v* ( ° m - 2)

aj = J Xi-tm Xi-tl Xi-tm-l (8.2)

v* ( ° m - 1) v* (0 m - 1)
Xi+l Xj+m Xi Xj+m-l

Proof. The proof of Theorem 1, using (6.3) and (6.4) in place of (1.2)
and (1.3), extends readily up to the point of substituting (2.5) and (2.6)
into (2.4), which here gives

N* (0 1 ... m - 1) = if [N* (0
1 x .. · x j=p t Xi

-N* (~

Except for the explicit form of ai , it is clear that

N* (0 1
t Xi

m ) _ N* (0 1
Xj+m-l t Xj+l

= a.N* (0
J t Xi+l

::: m - 1),
Xj+m-l

(8.3)

since each of the terms on the left vanishes at Xj+l ,... , xi+m-l and their
difference is a v-polynomial of degree at most m - 1.

To obtain aj explicitly, we let t tend to Xj+m from above. Then (8.3) yields

N* (Xi~m + ;i Xi:-l)
ai = -N-*-(-O~"---'~I"-----""'"m...c.:.::c-~I-)

Xj+m + Xi+l Xi+m-l

Evaluating the right-hand member by l'Hospital's rule and then using (5.5)
gives (8.2) after an appropriate number of column interchanges, completing
the proof of Theorem 7.
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If we let w;(x) = i (1 ,,;;; i ,,;;; m), the constant aj reduces to

Xj+m - Xj
aj = m

as it should. See also (2.1) and (5.7) above.
Returning now to the more general case and letting

Nj(x) = ajM,(x),

with aj given by (8.2), (8.1) becomes

vm-it) - u1(x) vm_lt) + u2(x) vm- 3(t) - •••

(8.4)

q

= L [Vm_l(t) - 'YJjVm- 2(t) + 'YJ~2>vm_3(t) - ••• ] N,(x), (8.5)
p

where we have utilized (5.7) on the left. The constants 'YJ1 and 'YJ~2l are given by

and

V* ( 0 m - 3 m - I)
XHI xHm-2 XHm-l

'YJ1 = --V"'"-*'-"(------o:o--:--'-::-'-"-'-m--"-------:::2-'--)~c-

Xi+! XHm-l

V* ( 0 m - 4 m - 2 m - I)
'YJ?> = __X-":....:."+.::.1__..."X,..:''-'."+=-.cm-3=----_X.=...H'-''mc....--=c2_X-'':....:.·+=fflc--l=_

V* ( 0 m - 2)
Xi+! XHm-l

(8.6)

Thus, we have the following corollary to Theorem 7, extending the corollary
to Theorem I.

COROLLARY. Let n ); I, Xo = a, Xn = band m ); 3. Then,for X E [a, b],

n-l

I = L N,(x),
I-m

n-l

Ul(X) = L 'YJjN,(x),
I-m

and
n-l

uix) = L 'YJ?lNj(x),
I-m

provided that N1-m(a) is replaced by N1_m(a+) whenever X-m+1 = a.

(8.7)

(8.8)

(8.9)
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9. T-spline Approximation on [a, b]

We assert that 'YJi is a nondecreasing sequence. Indeed, from (8.1) and (8.5),

(0 1 ... m - 1) (0N* -N*
t Xi+l ... xi+m-l t

= ('YJi+l - 'YJj) N* (~

1

m - 2)
Xi+m-l •

See also (8.3) above. Letting t tend to Xi+m from above and using l'Hospital's
rule determines 'YJi+l - 'YJj explicitly as a positive expression similar to (8.2),
unless Xi+l = Xi+m, in which case 'YJi+1 = 'YJi' (This case will be excluded
by (9.1) below.)

Let n > 0, k > °be integers and

a set of reals satisfying

a = Xo < Xl :s;; ... :s;; Xn- l < Xn = b
and

Xi-k < Xi

We extend the set by letting

(k < i < n).
(9.1)

X_k = X-k+l = .. , = X-I = a,

Xn+l = ... = Xn+k = b.

We then let
Nix) (-k :s;; j:S;; n - 1),

be defined by (8.4), with k = m - 1. We also define

(-k:S;;j:S;;n-l), (9.2)

with 'YJi given by (8.6) (see also Section 3 above).
Then

a = Lk < ~-k+l < ... < ~n-l = b,

and

n-l

1 = L Nix)
-k

(a :s;; X :s;; b), (9.3)

11-1

U1(X) = L Ul(~i) Nix)
-k

(a :s;; x :s;; b).
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These relations are clear, except, perhaps, the assertions g-k = a and
gn-l = b.

The first of these is equivalent to

V* (0 ... m - 3 m - 1)
a'" a a

'rJ-k = --V-*----:(~;c---::-:-m--;;~2-)-- = u1(a),

which is easily shown by direct expansion of the determinants.
We now define T-spline approximation.

To eachf(x) defined on [a, b] associate the T-spline

n-l

Tf(x) = T.lf(x) = L f(gj) Nix),
j=-k

(9.4)

which is to be regarded as an approximation to f(x) on [a, b].

This approximation method, of course, extends Schoenberg's variation
diminishing spline approximation method. It has the properties:

Tf(x) E C[a, b],

Tf(a) = f(a) and Tf(b) = f(b).

If the inequalities of (9.1) are all strict, then

Tf(x) E Ck-l[a, b].

The approximation reproduces "linear" functions

l(x) = cu1(x) + d.

Letting w1(x) = 1 gives u1(x) = x. This restriction amounts to the change
of variable z = Ul(X) and is, hence, no real restriction.

It is probable that Tf(x) has the variation-diminishing property in this case.
Much of Schoenberg's proof in [23] may be extended with no difficulty.

In view of (7.6) and (7.7) above, we have that

Iff(x) ;;::: 0 on [a, b], then Tf(x) ;;::: 0 on [a, b],

which yields the following theorem.

THEOREM 8. A necessary and sufficient condition that

lim Tf(x) = f(x), uniformly in [a, b], (9.5)
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for every function f(x) E qa, b], is that (9.5) hold for the particular function

or, equivalently, that

(9.6)

converges uniformly to O.

With this theorem, we have extended Part I, except for the variation
diminishing property and Section 4. We shall now prove a result analogous
to (4.1), which will yield weaker versions of Theorems 3 and 4.

LEMMA. Let Ai = max[a.bj Wi(X) (i = 1,2) and B = A1A 2(1 a I + I b I).
Then

o :(: I E(x)I :(: Bk II .1 II·

Proof From (9.6) and (5.1),

n-l ej Tl

E(x) = L f w1C'rI) f w2h) dT2dTl N;(x),
-k x 0

and, hence,
n-l

I E(x)I :(: tA1A2 L IU - x 2 1Nj(x)
-k

:(: tA1A 2 L I ~l - x 2
1 N;(x),

J.

where Jx is the set of j's for which N;(x) "* O. Using (8.7), we have

I E(x)I :(: tA1A2 max IU - x 2 I
J.

:(: tA1A 2 max I ~j + x I max I ~j - x 1
J.

:(: A1A2(1 a I + !b I) max(xj+k - Xj),

since

(9.7)

Proof of this last inequality is similar to the proof of the first of the relations
(9.3). Continuing, we have

I E(x)I :(: A1A 2(1 a 1+ I b I) k II .111

= Bk 11.111,

which completes the proof.
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Theorem 8 and the last Lemma yield weaker forms of Theorems 3 and 4.
Theorem 3 becomes:

A sufficient condition that

lim Tf(x) = f(x),

for every f(x) E qa, b], is that

uniformly in [a, b], (9.8)

lim k II L111 = o. (9.9)

A similar change occurs in Theorem 4.
Undoubtedly stronger statements can be made. However, it may be

necessary to require that the Ui(X) satisfy some condition similar to that
encountered in MUntz's theorem.

We close this section, and Part II, by observing that the requirement that

is not needed, provided that the continuity requirements for T-splines,
M;(x) and Tf(x) be correspondingly relaxed.

PART III: SOME PROPERTIES OF SPLINE ApPROXIMATION

10. Derivatives of Variation-Diminishing Spline Approximations

It is known (see Davis [6], p. 113) that for functions f(x) contained in
CP[O, 1], the pth derivatives of the corresponding Bernstein polynomials
converge uniformly to the pth derivative off(x) on [0, 1].

This fact does not hold for variation diminishing spline approximations
in general, except for p = 1.

Indeed, for the special case of equidistant knots,

n> 1 and
i

x· =-, n (0 < i < n),

the rth derivative (1 < r ~ p) of the spline approximation of degree k
to f(x) will converge to f<r>(x) as

if and only if

or, equivalently,

O<x<1.

k+n--oo

The convergence is uniform on compact subintervals of (0, 1).



IDENTITY FOR SPLINE FUNCTIONS 31

In this section, we shall concentrate on the first and second derivatives only.
The next three paragraphs serve to introduce the notation which we shall

follow in this section.
By D and D2 we shall mean the first- and second-derivative operators. By

n-l

S,/,/(x) = S,jf(x) = L f(~j) N;(x),
-k

we shall, as usual, mean the variation-diminishing spline approximation
to I(x) of degree k, over the knots of

where
x_k = X-k+l = ... = Xo = 0 < Xl ,

Xn-l < X n = .,. = Xn+k = I,

(I < i < n),
(10.1)

and
(k < i < n).

In order that the operators S,j and S,j below have strictly increasing
sequences of nodes, we shall add-the requirement that whenever k > 2,

(k < i < n + 2).

This requirement is really not necessary, but it avoids an awkward segmenta
tion of the interval [0, I] at "bad spots" which would otherwise occur.

By
n-l

S~:::Y(x) = S,jJ(x) = L: f(~i-) Ni-(x),
-(k-l)

we shall mean the variation-diminishing spline approximation of degree
k - lover the knots of LJ_, where

A _ A _ {X X } - {x}n+(k-l)
.:.1_ - .:.I -k' n+k - i -(k-l) •

Here, ~j- and Nj-(x) denote the nodes and fundamental functions
corresponding to LJ _ .

Similarly, we denote
LJ = {x.}n+(k-2)

= , -(k-2)

and let
n-l

sto/(x) = S,jj(x) = L: f(~i~) Nj~(x),
-(k-2)
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denote the variation-diminishing spline approximation of degree k - 2
over the knots of Ll = •

The following lemma is the key result of this section:

LEMMA 1. Letf(x) E C'[O, 1] and let k > 1. Then

DSLlf(x) = 'f f(gj) - f(gj-l) Nj-(x),
1-k gj - gj-l

and there is a smooth function r(x) such that

and

DSLlf(x) = S.dDf(x) + r(x)],

where w(S; g) is the modulus of continuity ofg(x) on [0, 1].

Proof Since

71-1

DSLlf(x) = L f(gj) DNj(x),
-k

(10.2)

(10.3)

(1004)

(10.5)

we examine the functions DN;(x). At each of the knots Xj ,Xj+1 ,... , Xj+k+1
the order of continuity of DN;(x) is precisely one less than that of Nj(x).
Also, DN;(x) is of degree k - 1. Thus, DN;(x) is a spline function of degree
k - lover the knots of Ll_ .

Since the support of DNj(x) is [Xj, Xj+k+1], DN;(x) is a uniquely determined
linear combination ofthose N i -(x) with support in [Xi' Xj+k+1]' See Theorem 5
in [5]. By considering the orders of continuity at Xj and Xj+k+1 , we see that,
in fact,

(-k <j < n - 1). (10.6)

Before evaluating OI.j and PHi' we shall consider DN_k(x) and DNn_lx),
both of which are not covered by (10.6).

From the explicit form of N_k(x) and Nn_1(x) on [0, 1], we arrive at

and

(10.8)
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To determine the constants in (10.6), it is convenient to use the relations

and

From (10.9) we have

n-l

L Nix) = 1
-k

n-l

L: gjN;(x) = x
-k

n-l

L DNix) = 0
-k

(0 ,s:; x ,s:; 1)

(0 ,s:; x :s;: 1).

(0 ,s:; x ,s:; 1).

(10.9)

(10.10)

(10.11 )

Substituting (10.6), (10.7), and (10.8) into (10.11) and reindexing gives

1 n-2
N1_k(x) [a1_ k - gl-k _ g-k] + 2~k (aj - f3 j ) N j -(x)

+ N;;_l(X) [g ~ g - f3n-l] = O.
n-l n-2

By uniqueness of representation, each coefficient is zero, so that

al-k = t. _ t. '
£l-k S-k

aj = f3j (1 - k <j < n - 1),

1
f3n-l = g g'

n-l - n-2

Differentiation of (10.10) yields

(10.12)

n-l

L gj DNix) = 1
-k

Substituting and reindexing gives

(0 ~ x :s;: 1).

n-2
N1_/x) + L: algj - g;-l) Nj-(x) + N;;_l(X) = 1,

2-k

from which uniqueness of representation gives

(-k+l<j<n-l). (10.13)
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Substitution of these results into (10.5) and reindexing yields (lO.2).
Thus, we have proved the first assertion of the lemma.

The second assertion (regarding rex»~ now follows readily, since

(-k <j < n), (10.14)

and, by the mean-value theorem, for each j there is an 7Jj such that

gj-l < 7Jj < gj ,
and

Thus,

(10.15)

n-l n-l

DSlJf(x) = L [Df(7Jj)] Nj-(x) = L [Df(gj-) + r(gj-)] Nj-(x)
l-k l-k

where

Now

max I r(gj-)I ~ w(max I 7Jj - gj-!; Df) ~ w(max(gj - gj-l); Df),

since (10.14) and (lO.15) imply that

I 7Jj - gj- I < gj - gj-l .

Clearly, rex) may be defined on all of [0, 1] as a smooth function with
extrema only at the nodes gj-,

This completes the proof of Lemma 1.
The following theorem extends a well-known property of Bernstein

polynomials (see Natanson [17], p. 179, or Davis [6], p. 113). The surprising
fact is that it is not true if D is replaced by D2.

THEOREM 9. Letf(x) E C'[O, 1]. Let

~-+O (10.16)
k

and
lim inf k > 1. (10.17)

Then
S,jf(x) -+ f(x) uniformly on [0, 1] (10.18)

and
DS,jf(x) -+ Df(x) uniformly on [0, 1]. (l0.19)
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Proof. That (10.16) implies (10.18) follows from Theorem 3 of Section 4
in Part I above.

Now, (10.17) implies that eventually

~=~:<2~
k-1 k-I"" k·

Thus, in view of (10.16),

~~O
k -1 '

which implies (again by Theorem 3) that

S,LDf(x) -- Df(x) uniformly on [0, I].

But (1004), the variation-diminishing property, and (10.3), respectively,
imply that

I DS.af(x) - S.a_Df(x) I = I S.aJ(x) I

~ sup 1r(x)! ~ w(max(~j - ~H); Df).
[0,1)

(10.20)

Since f(x) E C/[O, I] and max(~j - ~j-l) -- 0 (see Bohman [4], pp. 43-45),
the right member of (10.20) approaches zero.

Observing that this approach is independent of x completes the proof
of (10.19) and, hence, of the theorem.

Whenever k > 1 and f(x) E C2[0, I], we may apply (10.2) twice and use
remainder theory to obtain the following result. (See also Gruss [8] and
Popovicui [19].)

LEMMA 2. Letf(x) E C2[0, I] and k > I. Then

n-l t. t.
- " D2.f() ~j - ~j-2 N=()
- L. J TJj 2(t..- _ t.-:) j x,

2-k ~1 ~1-1

where

If the convergence criterion

(10.21)

(10.22)

\\~\\~o
k

(hence, max I ~j= - TJj I ~ 0), (10.23)
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is satisfied, the difference between D2f('TJi) and D2J(gi=) becomes uniformly
small. Thus, the limiting behavior of DW4 f(x) relative to D2J(x) depends
solely upon the behavior of the factors

(l-k<j<n). (10.24)

Unfortunately, none of our previous assumptions will impose "nice"
behavior on the Bi . For example, at x = 0,

the term

(10.25)

being B2- k • From (10.22),

so that (10.23) implies that

D2f('TJ2-k) --+ D2j(O).

But the remaining factor (10.25) may tend toward any number greater than
or equal to i (since (k - l)jk ~ i and (Xl + X2)j2xI ;); 1), or may have
no limit at all.

In a similar manner, since each Bi is at least (k - l)jk, it may be shown
that for any X E [0, 1], the ratio

may have any limit greater than or equal to t, or may have no limit at all.
The behavior is independent of the particular f(x) chosen from C2[0, 1].

We do have the following:

THEOREM 10. Letf(x) E C3[0, 1] and k > 2. Then

(A) IfDf(x) ;); °on [0, 1], then DS,Jf(x) ;); °on [0, 1].

(B) IfD2j(x) ;); 0 on [0, 1], then D2S,Jf(X) ;); 0 on [0, 1].

However,

(C) IfDo/(x) ;); 0 on [0, 1], D3S,Jf(X) need not be nonnegative.
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A similar (and more basic) result holds if the derivatives are replaced by
divided differences (see Gruss [8] and Popoviciu [19]). In particular, convexity
of order 0 or 1 is preserved, but convexity of order 2 is not (see [19] for
definition of convexity or order n).

Proof of Theorem 10. Statements A, B follow from Lemmas 1, 2,
respectively.

To verify C, we set g(x) = x2. Then D3g(X) ?: O. By using Lemma 1 three
times, with

i
x· =-, n

we get

(0 < i < n) and k >2,

and, in particular,

We now state a theorem about the limiting behavior of variation
diminishing spline approximation over equidistant knots.

THEOREM 11. Letf(x)E C2[0, 1], and let

(0 < i < n),

be the interior knots Qf ..::::I. Let n + k -- 00, lim inf n > 1, and lim inf k > 1.
If

exists, then

lim D2S,jf(0) = 3: D2j(O),

lim D2S,jf(1) = 3: D2j(l),

and
lim DW,jf(x) = D2j(x) (0 < x < 1).

The convergence is uniform on compact subsets of (0, 1).
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(10.26)

Theorem 11 follows from Lemma 2 by a proof similar to that of Theorem 1
in [16].

A separate argument is needed for R = i (lim k = 2).
If R > t , it can be shown that there are functions

bnk(x) (n > I, k > 2, 0 ~ x ~ 1),

for which (10.24) becomes

(10.27)

Then (10.21) gives

using an argument similar to the proof of (10.3) and (10.4). It can also be
shown that

(x = 0, I)
(0 < x < I).

(10.28)

A complete proof would require specification of the bnk(x). Here we shall
observe only that, for x's near zero,

k-l k-l
bnk(x) = -k- +-k- {I + [1 + 8n(k - 2)X]l/11}-1, (10.29)

suggesting the reason for (10.28). To arrive at (10.29), one first expresses Bj

as given by (10.24) as a function of j, then expresses j as a function of gi~.

Combining the two, and replacing gj= by x, yields bnlx). It is necessary to
segment the interval [0, 1] at the points (k - 2)j2n and 1 - (k - 2)j2n
if k - 2 ~ n, or nj2(k - 2) and 1 - nj2(k - 2) if n ~ k - 2.

11. Spline Approximation to Convex Functions

In this section we consider the effect of "refining" L1, on spline approxi
mation to convex functions. More specifically, we consider

and

where both LI and L1' satisfy (10.1) above and

(hence, k' ~ k, n' ~ n),

and ask whether the following conjecture is valid.



IDENTITY FOR SPLINE FUNCTIONS

CONJECTURE. Iff(x) is convex, then
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(0 :::;; x :::;; 1).

This conjecture is suggested by the fact that it is valid for Bernstein
polynomials; that is, when n = n' = 1 (see Schoenberg [21] or Davis [6],
p. 115).

It is not true when n = n' > 1; in fact, we have

THEOREM 12. Whenever

n = n' > 1 and k' >k,

there is a convex function f(x) for which

where Xl is the first interior knot ofA.

Proof There is an integer j for which

o < Xl = ... = Xi < Xi+! .

Then

and

Let

f(x) = (~i-k - X)(~i_k - ~;_k,)-l

=0

Thenf(x) is convex,

(0 :::;; X :::;; ~i-k)'

(~j-k :::;; X :::;; 1).

for i ~j - k,
and

for i <j - k,
so that

for all i.
Also,

f(~;-k') N;_k'(XI) = N;_k'(XI) > 0,

since the support of N;_k'(X) is [0, Xi+1]'
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Thus,
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contradicting the conjecture. The latter inequality follows from the variation
diminishing property.

When k = k', the conjecture is valid. In a manner similar to the proof
of (10.2) above, one can prove the following lemma and, hence, the theorem
with which we conclude this section.

LEMMA. Let f(x) be a convex function and let

with n' = n + I and k' = k.
Then

(0 ~ x ~ 1).

THEOREM 13. Let f(x) be a convex function and let

.::1' :ul with k' = k.
Then

(0 < x ~ 1).

Observe that Theorem 13, which is proved by applying the lemma n'-n
times, is encouraging, since, in practical application of spline approximation
theory, one would normally want to fix k when refining.::1.

In view of the relaxation in continuity which would occur, it seems plausible
to improve spline approximation to arbitrary functions by inserting knots
at points where the error in the current approximation is worst.

12. Constraints on the Nodes

We now consider spline approximation of a given positive degree k
where the nodes

are given, but the knots

Xi (-k ~ i ~ n + k)

are not specified. We suppose that the nodes satisfy

o = g-k < gl-k < ... < gn-l = 1. (12.1)

This is the form in which a practical problem might arise, with both gj
and f(gj) specified and a spline approximation to f(x) desired.

Since
t. = Xj+! + ... + Xj+k
£'J k (-k ~j <n), (12.2)
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there are k - 1 degrees of freedom on the knots

Xi (-k < i < n + k).
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The choice of X-k and Xn+k is irrelevant to the resulting approximation,
provided that for each i

To specify the knots, we impose the condition

(hence, Xo = 0). (12.3)

We shall say that a set of nodes "yields a spline approximation of degree k"
if it satisfies (12.1) and if (12.2) and (12.3) imply that

Xj-1 ~ Xj (0 < j < n + k). (1204)

A set of nodes which does not yield a spline approximation of degree
k = 2 is the following:

L2 = 0, ~-1 = 004,

for which (12.2) and (12.3) imply

~o = 0.7,

Xl = 0.8, X2 = 0.6, X 3 = lA,

in violation of (1204).
In Theorem 14, a necessary and sufficient condition that the nodes yield

a spline approximation ofa fixed degree k is given. In its corollary, a condition
that the nodes yield spline approximations of all degrees is given.

Theorem 15 gives a condition that a set of nodes which yields a spline
approximation of degree k will also yield knots satisfying

X n = X n +1 = ... = X n+k-1 = 1. (12.5)

It is only in this case that the approximation is "good" on the full interval
[0, 1] and that we have the variation diminishing spline approximation
described in Section 3 above.

In the corollaries to this theorem, the consequences of equal spacing of
the nodes are demonstrated, and it is "shown" that linear interpolation
(k = 1) is always possible.

All of these results follow from the following:

LEMMA. For 0 < j < n + k,

(1+k-1)/k (j+k-1)/k

Xj = k L (gj-ik - ~j-1-ik) = kV L gj-ik • (12.6)
i=l i=l
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Here
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VYJj = YJj - YJj-l ,

is the first backward difference. We shall later need

V2YJj = YJj - 2YJj-l + YJj-2 •

Proof. For convenience, let Yj = xjfk. Then (12.2) implies

YHk = ~j - ~j-l + Yj

In view of (12.3),

(-k < j < n). (12.7)

Yk = ~o - Ll,

which is (12.6) for 0 < j ~ k.
Combining (12.7) and (12.8) for k < j ~ 2k yields

Yk+l = (~l - ~o) + (~I-k - ~-k)'

By induction the complete lemma follows.

(12.8)

(12.9)

THEOREM 14. Let k > O. A necessary and sufficient condition that a set
ofnodes ~j yield a spline approximation ofdegree k is that

(Hk-l)/k ,

v2
( L ~i-ik)~O

>=1
(1 <j<n+k). (12.10)

This spline approximation is variation diminishing on the interval [0, xn ].

Proof The expression Xj - Xj-l is the left-hand side of (12.10). Adding
knots at Xn+k-l to bring the multiplicity there up to k will yield the variation
diminishing spline approximation of Section 3 above, on the interval
[0, Xn+k-l]' But the added N,(x) do not have support on [0, xn].

COROLLARY. A necessary and sufficient condition that a set ofnumbers

o = YJo < YJl < ... < YJ! = 1

yield spline approximations of all degrees is that

(1 < j ~ I), (12.11)

or, equivalently, that the nodes yield a spline approximation of degree k = I.
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No upper limit on k has been assumed so far. A natural upper limit,
k :( I, arises when we require that the spline approximation yielded by a set
of nodes reduces to that described in Section 3.

THEOREM 15. Let k > 0 and the nodes 'j yield a spline approximation of
degree k. Then a necessary and sufficient condition that the spline approximation
be variation diminishing on all of [0, 1] is that

(n+k-l)/k

kV ( I 'n-ik) = 1.
,~l

Proof The left-hand side of (12.12) is xn •

COROLLARY 1. If the nodes 'j are evenly spaced, with

(12.12)

(-k o:(j < n), (12.13)

then these nodes yield a spline approximation ofdegree k. This spline approxi
mation is equivalent to Bernstein polynomial approximation of degree k in the
intervals

ik-k ik
n+k-lo:(xo:(n+k-l (o ·s::n+k-l)< 1 ~ k .

If (n - l)jk is an integer, (12.5) is satisfied. Conversely, if (n - l)jk is not
an integer, (12.5) is not satisfied.

Proof Theorem 14 yields the first statement. The second statement
follows, since the knots are equal in groups of k, with the possible exception
of the last group (those which are outside the interval 0 :( x < 1). The last
statements follow from (12.12) and (12.13).

The following not-so-astounding corollary is mentioned to verify, once
again, that linear interpolation is the "best" approximation of all, this time,
because no constraints on the nodes are necessary (see also the Introductions
to both [16] and [22]).

COROLLARY 2. Linear interpolation, that is, variation diminishing spline
approximation with k = 1, is always possible.

Proof The statement is equivalent to saying that when k = 1, (12.10)
and (12.12) are implied by (12.1) without additional conditions. This is
easily verified.
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PART IV: CONCERNING VORONOVSKAYA'S THEOREM

13. An Analog of Voronovskaya's Theorem

For n = 1, variation diminishing spline approximation reduces to Bernstein
polynomial approximation. We have already seen that many properties of
the latter extend. We shall now consider whether Voronovskaya's theorem
(see [6] or [15]), which says that

lim k[Sf(x) - f(x)] = f"(x) x(1 - x)j2 (n = 1) (13.1)

for bounded functions, where f"(x) exists, will similarly extend.
Recalling from Section 4 that for g(x) = x 2, n = 1, we have

x(1 - x)
E(x) = Sg(x) - g(x) = k '

we see that (13.1) can be written

lim k[Sf(x) - f(x)] = f"(x) [lim k E~X)].

Since spline approximation involves the interior knots of Ll (i.e., Xi'

for 0 < i < n) as well as the degree k, we should expect that the letter k
would be replaced by an expression involving k and the knots of Ll; for
example,

lim h(k; Ll)[Sf(x) - f(x)] l f"(x) [lim h(k; Ll) E~X)], (13.2)

where h(k; Ll) is such that the limit on the right exists but is not trivial.
That (13.2) can be valid in more general instances is shown by the following

theorem. Observe that k shows up in the denominator rather than the
numerator. This theorem was stated by I. J. Schoenberg in [22]. It is not
valid if lim kjn > O.

THEOREM 16. Let the spline approximation of Section 3 above be defined
with the interior knots of Ll given by

i
Xi = n

Let 0 < x' < 1. Iff(x) E C"[O, 1] and

(0 < i < n).

Iim~ = 0
n '
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then

I ' ~ [sy:( ') -f( ')] = f"(x') I' ~ E( ') = f"(x')
1m k + I 'J X x 2 1m k + 1 x 24'

Proof From Taylor's theorem,
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(13.3)

where
lim, sex) = o.
x-.x

Thus,

Sf(x') = f(x') +f"~1E(x') +nf s(gj)(gj - x')2 Nix'), (13.5)
-To

and hence

k ~ I I[Sf(x') - f(x') - f'y') E(x')] I
n2

~ [ sup I s(x)[] k + I E(x')
Ix-x'!«To+l)/2n

(13.6)

since Nix') = 0 for j such that! gj - x' [ > (k + 1)/2n, and it was shown
in [16] that

E( ) <: (k + I)
x""" 12n2 (k < n + 2).

As (k + I)/n -+ 0, the right-hand side of (13.6) tends to zero. Since it was
also shown in [16] that E(x) = (k + 1)/12n2 whenever

(k + I)/n < x < 1 - (k + I)/n,

we have (13.3).
In the more general situation represented by (13.2), one would proceed

in a similar manner, getting

h(k; .1) [Sf(x) - f(x) - f'ix
) E(x)]

n-l

= h(k; .1) L s(gj)(gj - x)2 Nix).
-To

(13.7)
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To "prove" that the right-hand side tends to zero, we split the sum into two
parts,

n-l

L = L+ L:,
-k 1 2

where Ll denotes summation over those j for which

I gj - x 1< 0,

and L2 denotes summation over those j for which

The number 0 is chosen so that in Ll , s(gj) is very small and so that

h(k; Ll) L (gj - X)2 Nix),
2

(13.8)

(13.9)

is very small, too. Since the remaining factors in each sum are bounded, the
"proof" is complete.

The difficult part of the proof is in showing that (13.9) is very small.

14. Two Conjectures

We illustrate the procedure by partially proving the following conjecture.

CONJECTURE 1. Letf(x) be bounded in [0, 1]. Let

1= n + k - 1,
and let

i
x· =-, n

be the interior knots ofLl. If

(0 < i < n)

I
, k
lm- = t,

l-:H:t:) n

exists as a positive extended real number, then

(14.1)

lim IE(x) = e(x, t)
1-+00

exists, is a continuous function of x, and

(0 ~ x ~ 1) (14.2)

lim I[Sf(x) - f(x)] = f"(x)[e(x, t)j2],
Hoo

whenever f"(x) exists.

(14.3)
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Partial proof. That e(x, t) exists involves a procedure similar to the proof
of Theorem 1 in [16]. See also the remarks which conclude Section 10 above.
Indeed, e(x, t) is given at the very end of this paper as a specific continuous
function of x and t. The requirement (14.1) is necessary, although t may be
infinite.

To demonstrate (14.3), we first use (13.7), then (13.8). For Ll we have
(for sufficiently small 8 and sufficiently large l)

IIL s(g;)(g; - X)2 Nix) I ~ eIE(x) < eBt
1

in view of (14.2), where B t is a liberal bound on e(x, t).
Similarly, L,2 can be bounded as follows:

IILS(gi)(gi - X)2 Nix) I ~ CI L(g; - X)2 Ni(x)
2 2

I
~ C 8

2
L (gi - X)4 Nix)
2

I n-l

~ C 8
2

L (g; - X)4 Ni(x), (14.4)
-I.;

since 82 ~ (gi - X)2 in L2 .
The choice (see [6], p. 117)

8 = 1-1 / 4

leads us to the consideration of

n-l

13/ 2 L (gi - x)4 Ni(x).
-k

Whether this tends to zero is not known.
A completely different approach to proving that L2 in (14.4) tends to zero

would be to consider the nature of Nix) for those j involved in L,2 . To do this
would i~volve reference to results in [5]. Preliminary attempts suggest that
this approach will eventually prove fruitful.

Our second conjecture involves the asymptotic behavior of functions
possessing higher derivatives (see Bernstein [3] or Lorentz [15], p. 23).

CONJECTURE 2. Let fE C2i[O, 1] and let Tf(x) be the sum of the first
2j terms in the Taylor expansion off about the point x. If the hypotheses of
Conjecture 1 hold. then

lim li[Sf(x) _ Tf(x)] = f(2i.)(X) [e(x, t) ]i.
l->a:; J! 2

There is some evidence that both conjectures may be true.
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By a proof exactly like theirs, we have the following converse of
Conjecture 1, which, if true, would extend the Bajsanski-Bojanic Theorem [2].

THEOREM 17. Let
i

x· =-, n (0 < i < n)

be the interior knots of LI and let

O~a<b~l.

Let f(x) E qo, 1] and suppose

lim I[Sf(x) - f(x)] = 0
l->oo

for each x E (a, b).

If
lim~ > 0
l->oo n

exists and if Conjecture 1 is true, then f(x) is linear in (a, b).

The proof will not go through, unless

e(x, t) > 0 for each x E (a, b).

Since lim kin -=I=- 0, this is the case. More specifically, the following is true:

Let I = n + k - 1 and let the interior knots ofLI be given by

lim kin = t,
boo

If
Xi = iln (0 < i < n).

exists as an extended real number, then

lim IE(x) = e(x, t),
1...,00

(0 ~ x ~ 1, 0 ~ t ~ 00),

exists as a continuous function of x and t. Moreover,r: 3;'I) f(2Ix)'I' - 31x']

e(x, t) = l12 t(t + 1)
~(x_x2 __1 )"

t 6t

and

(0~x~~,2x~t~ 2~)

(~ ~X~I-~,O~t~l)

(it ~ x ~ 1 - it ' 1 ~ t ~ 00)

e(x, t) = e(1 - x, t)(! ~ x ~ 1, 0 ~ t ~ 00).
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